Enantioselective *gem*-Chlorofluorination of Active Methylene Compounds Using a Chiral Spiro Oxazoline Ligand

LETTERS 2011 Vol. 13, No. 11 2944–2947

ORGANIC

Kazutaka Shibatomi,* Akira Narayama, Yoshinori Soga, Tsubasa Muto, and Seiji Iwasa

Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Japan

shiba@ens.tut.ac.jp

Received April 15, 2011

Highly enantioselective *gem*-chlorofluorination of active methylene compounds was carried out by using a copper(II) complex of a chiral spiro pyridyl monooxazoline ligand. This reaction yielded α -chloro- α -fluoro- β -keto esters and α -chloro- α -fluoro- β -keto phosphonates with up to 92% ee. The resulting dihalo β -keto ester was converted into various α -fluoro- α -heteroatom-substituted carbonyl compounds via nucleophilic substitution without loss of optical purity. A fully protected β -amino acid with a *gem*-chlorofluoromethylene function was also synthesized.

Optically active organofluorine compounds are becoming increasingly important in pharmaceutical and agricultural chemistry.¹ These compounds, especially those having a fluorinated stereogenic center, are fascinating building blocks for new drug candidates. In the current research, we focus on the stereoselective construction of a *gem*-chlorofluorinated chiral carbon center, which is an attractive functional group because of the following reasons: 1) α chloro- α -fluoro carbonyl compounds are expected to be useful synthetic intermediates for a variety of chiral fluorinated compounds because the chlorine moiety works as a leaving group; 2) the *gem*-chlorofluoromethylene group would be a chiral isostere of the *gem*-difluoromethylene group in bioactive compounds.² Surprisingly, very few researchers have focused on the asymmetric synthesis of *gem*-chlorofluoro compounds.^{3,4} One possible reason for this is that it is difficult to discriminate two halogens in the stereochemistry-determining step due to their sterical similarity. Recently, we succeeded in carrying out the asymmetric syntheses of some α -chloro- α -fluoro carbonyl compounds.^{3c} We also showed that the nucleophilic substitution of these compounds proceeds with keeping their optical purity. These successful results encouraged us to attempt the development of a method for synthesizing a new class of α -chloro- α -fluoro carbonyl compounds.

Our synthetic strategy is shown in Scheme 1. Electrophilic chlorination of β -keto esters affords α -monochloro- β -keto esters in situ, in the presence of chiral Lewis acid catalyst. Subsequent electrophilic fluorination yields the desired α -chloro- α -fluoro- β -keto esters with asymmetric

 ^{(1) (}a) Fluorine in medicinal chemistry and chemical biology; Ojima, I., Eds.; Wiley & Sons: New York, 2009. (b) Bégué, J.-P.; Bonnet-Delphon, D. Bioorganic and Medicinal Chemistry of Fluorine; Wiley & Sons: Hoboken, NJ, 2008.

⁽²⁾ Considerable effort has been made for the synthesis and biological evaluation of CF_2 -incorporated bioactive compounds. See ref 1 (3) (a) Erantz **P**: Hintermann **L**: Perceptini **M**: Broggini **D**:

^{(3) (}a) Frantz, R.; Hintermann, L.; Perseghini, M.; Broggini, D.; Togni, A. Org. Lett. **2003**, *5*, 1709. (b) Cho, M. J.; Kang, Y. K.; Lee, N. R.; Kim, D. Y. Bull. Korean Chem. Soc. **2007**, *28*, 2191. (c) Shibatomi, K.; Yamamoto, H. Angew. Chem., Int. Ed. **2008**, *47*, 5796.

⁽⁴⁾ During the preparation of this manuscript, a nice paper appeared describing the highly enantioselective α -fluorination of α -chloro- β -keto esters by using a chiral nickel catalyst (our manuscript was originally submitted on October 14, 2010); see: Kang, S. H.; Kim, D. Y. *Adv. Synth. Catal.* **2010**, *352*, 2783.

Scheme 1. Synthetic Strategy for Chiral Fluorinated Molecules

induction. Nucleophilic substitution of the chlorine moiety in the resulting compounds affords a variety of α -fluoro- α heteroatom-substituted esters. In 2003, Togni and coworkers demonstrated the asymmetric synthesis of α chloro- α -fluoro- β -keto esters by this sequential double halogenation in one-pot operation in the presence of Ti-TADDOLate catalyst with up to 65% ee.^{3a,5} With the aim of achieving high asymmetric induction, we attempted to carry out *gem*-chlorofluorination in the presence of a new chiral Lewis acid catalyst, which we synthesized from a 2-pyridyl monooxazoline ligand (SPYMOX)⁶ having a spiro-fused axial chiral binaphthyl backbone (Scheme 2).

We started our investigation by screening various Lewis acids for the enantioselective α -fluorination of α -chloro- β keto ester **2** with *N*-fluorobenzenesulfonimide (NFSI).^{7,8} As shown in Table 1, the copper(II) triflate complex of SPYMOX (1) was very effective for asymmetric fluorination of **2** in benzene; in this case, the desired α -chloro- α fluoro- β -keto ester **3a** was obtained in high yield and enantioselectivity (entry 5; 90% ee). **Table 1.** Asymmetric α -Fluorination of α -Chloro- β -keto Ester^{*a*}

Me	CO ₂ t-Bu ((<i>R</i>)-1 (12 mol %) Lewis acid (10 mol %) (PhSO ₂) ₂ NF (3 equiv)		Me CO ₂ t-Bu		
	2	solvent, 40 °C MS 4 Å		F Cl 3a		
			$time^b$	$yield^c$	ee^d	
entry	Lewis acid	solvent	[h]	[%]	[%]	
1	$Ni(ClO_4)_2 \cdot 6H_2$	O benzene	18	57	0	
2	Mg(OTf) ₂	benzene	22	54	6	
3	$Zn(OTf)_2$	benzene	38	81	80	
4^e	$Cu(ClO_4)_2 \cdot 6H_2$	o benzene	11	36	76	
5	Cu(OTf) ₂	benzene	8	82	90	
6	Cu(OTf) ₂	CH_2Cl_2	11	61	52	
7	$Cu(OTf)_2$	Et_2O	13	72	60	

^{*a*} All reactions were carried out at 40 °C (bath temperature) with 3 equiv of NFSI in the presence of a chiral catalyst prepared from 12 mol % of 1 and 10 mol % of Lewis acidic metal. ^{*b*} All reactions were quenched after the complete consumption of 2 unless otherwise noted. ^{*c*} Isolated yield. ^{*d*} Determined by chiral HPLC analysis. ^{*e*} About 50% of the starting material remained unreacted.

The high asymmetric induction ability of our new catalyst in the fluorination prompted us to proceed to the next stage, the one-pot asymmetric gem-chlorofluorination of β -keto esters. In the first step, β -keto ester 4a was chlorinated with N-chlorosuccinimide (NCS) in the presence of a $1/Cu(OTf)_2$ complex. After the complete consumption of 4a by TLC monitoring, NFSI was added to the reaction mixture. Fluorination was conducted at 40 °C for 8 h to afford the desired product 3a in 70% yield (over 2 steps) along with the α , α -dichlorinated form in approximately 5% yield (Table 2, entry 1). To our delight, the optical purity of 3a in this onepot reaction was sufficiently high (90% ee), and the sense of enantioselection was the same as that in the fluorination of monochloro ester 2 (Table 1, entry 5). This implied that the stereochemical outcome of this double halogenation is determined by the fluorination step. Several β -keto esters were subjected to gem-chlorofluorination under similar reaction conditions. As summarized in Table 2, various α chloro- α -fluoro- β -keto esters, including aliphatic, aromatic, and heterocyclic ketoesters, were successfully synthesized with good to high optical purity $(79-92\% \text{ ee})^{-9}$

Next, we extended the enantioselective *gem*-chlorofluorination to several β -keto phosphonates **5**. As shown in Table 3, the $1/Cu(OTf)_2$ complex was very effective for this reaction; thus, the desired α -chloro- α -fluoro- β -keto phosphonates **6a**-**f** were isolated in moderate to good yields with high enantioselectivity (85–92% ee).⁹ It is noteworthy

⁽⁵⁾ A method for asymmetric chlorination of β -keto esters with a Ti-TADDOLate catalyst: Hintermann, L.; Togni, A. *Helv. Chim. Acta* **2000**, *83*, 2425.

⁽⁶⁾ For the synthesis of SPYMOX and its application in palladiumcatalyzed asymmetric allylic alkylation, see: Shibatomi, K.; Muto, T.; Sumikawa, Y.; Narayama, A.; Iwasa, S. *Synlett* **2009**, 241.

⁽⁷⁾ Although the field of asymmetric α -fluorination of active methine compounds is progressing steadily, there are only a few known catalysts that achieve high enantioselectivity (over 90% ee) in the fluorination of acyclic β -keto esters or β -keto phosphonates. For successful examples with acyclic substrates, see: (a) Hintermann, L.; Togni, A. *Angew. Chem., Int. Ed.* **2000**, *39*, 4359. (b) Hamashima, Y.; Yagi, K.; Takano, H.; Tamás, L.; Sodeoka, M. J. Am. Chem. Soc. **2002**, *124*, 14530. (c) Hamashima, Y.; Suzuki, T.; Shimura, Y.; Shimizu, T.; Umebayashi, N.; Tamura, T.; Sasamoto, N.; Sodeoka, M. *Tetrahedron Lett.* **2005**, *46*, 1447. (d) Kim, S. M.; Kim, H. R.; Kim, D. Y. *Org. Lett.* **2005**, *7*, 2309. (e) Reddy, D. S.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.; Kanemasa, S. *Angew. Chem., Int. Ed.* **2008**, *47*, 164. (f) Bernardi, L.; Jørgensen, K. A. *Chem. Commun.* **2005**, 1324. (g) See also ref 4.

⁽⁸⁾ For a review on the asymmetric functionalization at a halogenated prochiral carbon, see: Shibatomi, K. *Synthesis* **2010**, 2679.

⁽⁹⁾ We have confirmed that the optical purity of *gem*-chlorofluoro carbonyl compounds **3a**, **3b**, **3d**, and **6a** does not change even after chromatographic purification using achiral silica gel or solvent evaporation. Therefore, we conclude that the enantiomers do not undergo self-disproportionation during the purification process. For enantiomers self-disproportionation effect of perfluorinated compounds, see:(a) Soloshonok, V. A. Angew. Chem., Int. Ed. **2006**, 45, 766. (b) Soloshonok, V. A.; Ueki, H.; Yasumoto, M.; Mekala, S.; Hirschi, J. S.; Singleton, D. A. J. Am. Chem. Soc. **2007**, *129*, 12112. (c) Ueki, H.; Yasumoto, M.; Soloshonok, V. A. Tetrahedron: Asymmetry **2010**, *21*, 1396.

Table 2. Asymmetric gem-Chlorofluorination of β -Keto Esters^a

^{*a*} See Supporting Information for experimental details. ^{*b*} Isolated yield over 2 steps. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} Np = 1-naphthyl. ^{*e*} Fluorination was carried out under reflux conditions. ^{*f*} Catalyst was prepared from 30 mol % of Cu(OTf)₂ and 36 mol % of 1.

that both chlorination and fluorination of β -keto phosphonates proceeded much faster than those of β -keto esters; however, the selectivity toward monochlorination was slightly poor, which resulted in the formation of a considerable amount of α , α -dichloro- β -keto phosphonate (ca. 10–25%) as the byproduct.

After successfully synthesizing optically active *gem*chlorofluoro carbonyl compounds, we carried out derivatization of these compounds to obtain a variety of chiral fluoro compounds (Scheme 3). Nucleophilic substitution of the optically active **3d** (92% ee) with alkyl thiols proceeded smoothly to yield the corresponding α -fluoro- α -sulfenyl- β -keto esters **7a,b**,¹⁰ which are expected to be versatile building templates for biologically active molecules.^{10b} It should be noted that the optical purity of products **7** was exactly the same as that of the starting compound **3d**. This result strongly suggested that this nucleophilic substitution proceeded in a rigorous S_N2 fashion. Substitution of **3d** with sodium azide also **Table 3.** Asymmetric *gem*-Chlorofluorination of β -Keto Phosphonates.^{*a*}

entry	product	<i>t</i> [h]	yield [%] ^b	ee [%] ^c
1	0 0 ↓	24	73	92
2	Ph F Cl 6b (R = Et)	24	78	85
3	CI F CI 6c	24	55	90
4	MeO F CI 6d	50	52	92
5	F Cl	65	64	90
6 ^{<i>d</i>}	S F Cl	70	69	86

^{*a*} See Supporting Information for experimental details. ^{*b*} Isolated yield over 2 steps. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} Catalyst was prepared from 30 mol % of Cu(OTf)₂ and 36 mol % of 1.

proceeded smoothly to yield the corresponding α -azido- α -fluoro- β -keto ester **8** without loss of optical purity.¹¹ Azide **8** was further converted into fluorinated 1,2,3-triazoles **9a,b** by copper-catalyzed cycloaddition with alkynes. Furthermore, reduction of **3d** with lithium tri(*tert*-butoxy)aluminum hydride yielded secondary alcohol **10** with good diastereoselectivity (*anti/syn* = 8/2). **10** could be successfully converted into fluoro epoxide **11** by alkaline treatment. There are very few reports on the asymmetric

Scheme 3. Stereospecific Derivatization of 3d

⁽¹⁰⁾ For asymmetric syntheses of α-fluoro-α-sulfenyl-β-dicarbonyl compounds, see: (a) Jereb, M.; Togni, A. *Chem.—Eur. J.* 2007, *13*, 9384.
(b) Ishimaru, T.; Ogawa, S.; Tokunaga, E.; Nakamura, S.; Shibata, N. *J. Fluorine Chem.* 2009, *130*, 1049. (c) See also ref 7e.

⁽¹¹⁾ For asymmetric syntheses of α-fluoro-α-nitrogen-substituted-β-dicarbonyl compounds, see: (a) Huber, D. P.; Stanek, K.; Togni, A. *Tetrahedron: Asymmetry* **2006**, *17*, 658. (b) He, R.; Wang, X.; Hashimoto, T.; Maruoka, K. *Angew. Chem., Int. Ed.* **2008**, *47*, 9466. (c) Mang, J. Y.; Kwon, D. G.; Kim, D. Y. *J. Fluorine Chem.* **2009**, *130*, 259. (d) Also see ref 7e.

synthesis of fluoro epoxides, although optically active fluoro epoxides are known to be good synthetic intermediates for various chiral α -substituted ketones.¹²

We next focused on the transformation of α -chloro- α -fluoro- β -keto esters into optically active β -amino acids because fluorinated amino acids have been the subject of intensive research.¹ Reduction of **3a** with diisobutylaluminum hydride (DIBAL-H) afforded *anti*-chlorofluorohydrin **12** with very high diastereoselectivity (Scheme 4).¹³ Treatment of **12** with triflic anhydride and subsequent azidation yielded the corresponding azide **13** with inversion of configuration; the obtained azide was converted into a fully protected β -amino acid **14** with a *gem*-chlorofluoromethylene group.

Scheme 4. Synthesis of α -Chloro- α -fluoro- β -amino Ester

Finally, to establish the absolute stereochemistry of these *gem*-chlorofluoro compounds, we synthesized α -chloro- α -fluoro- β -keto ester **16**, which has a *d*-menthyl group as a chiral auxiliary, by the fluorination of α -chloro- β -keto ester **15** with the (*R*)-**1**/Cu(OTf)₂ catalyst (94% de, Scheme 5).¹⁴ Hydride reduction of **16** and subsequent acylation yielded β -acyloxy ester **18**. **18** was recrystallized from Et₂O/*n*-hexane to afford single crystals that were suitable for X-ray structural analysis. As shown in Scheme 5, on the basis of the stereochemistry on the *d*-menthyl group, the absolute configuration of the

Scheme 5. Determination of Stereochemistry

dihalogenated chiral carbon center was determined to be *R*. It was also confirmed that the reduction of **16** and **3d** with lithium tri(*tert*-butoxy)aluminum hydride preferentially affords *anti*-isomers.

In conclusion, we have demonstrated the enantioselective *gem*-chlorofluorination of active methylene compounds in the presence of a new chiral Lewis acid catalyst, the SPYMOX/Cu(II) complex; in this reaction, the corresponding α -chloro- α -fluoro carbonyl compounds were isolated with up to 92% ee. The resulting compounds were successfully converted into various α -fluoro- α -heteroatom-substituted carbonyl compounds via nucleophilic substitution without loss of optical purity. A fully protected β -amino acid with a *gem*-chlorofluoromethylene function was also synthesized.

Acknowledgment. This study was supported by the Sumitomo Foundation, a Grant-in-Aid for Young Scientists (B) (21750096) from MEXT, and the Asahi Glass Co., Ltd. We are grateful to Mr. Ikuhide Fujisawa (Toyohashi University of Technology) for assistance in the X-ray analysis. We thank the Instrument Center of the Institute for Molecular Science for permission and advice on the usage of their X-ray diffractometer equipment. We also thank the Nippon Synthetic Chemical Industry Co., Ltd. for supplying ethyl isocyanoacetate used in the synthesis of SPYMOX.

Supporting Information Available. Experimental procedures, characterization of all new compounds, and crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹²⁾ For asymmetric syntheses of fluorinated epoxides and their transformation, see: (a) Gosmini, C.; Dubuffet, T.; Sauvêtre, R.; Normant, J.-F. *Tetrahedron: Asymmetry* **1991**, *2*, 223. (b) Wong, O. A.; Shi, Y. *J. Org. Chem.* **2009**, *74*, 8377.

⁽¹³⁾ The relative configuration of **12** was determined by X-ray crystallographic analysis. See Supporting Information for details.

⁽¹⁴⁾ Fluorination of *ent*-15, which has an *l*-menthyl group as a chiral auxiliary, yielded *ent*-16 as a diastereomixture (dr = 21:79) in the presence of the (R)-1/Cu(OTf)₂ catalyst. The absolute configuration at the chlorofluorinated carbon in the major diastereomer of *ent*-16 was found to be the same as that in the major diastereomer of 16 obtained in Scheme 5 by comparing their NMR spectra. This clearly indicated that the sense of stereoselection in these fluorination reactions was controlled by the chiral catalyst and not by the chiral auxiliary.