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ABSTRACT

Highly enantioselective gem-chlorofluorination of active methylene compounds was carried out by using a copper(II) complex of a chiral spiro
pyridyl monooxazoline ligand. This reaction yielded R-chloro-R-fluoro-β-keto esters and R-chloro-R-fluoro-β-keto phosphonates with up to 92%
ee. The resulting dihalo β-keto ester was converted into various R-fluoro-R-heteroatom-substituted carbonyl compounds via nucleophilic
substitution without loss of optical purity. A fully protected β-amino acid with a gem-chlorofluoromethylene function was also synthesized.

Optically active organofluorine compounds are becom-
ing increasingly important in pharmaceutical and agricul-
tural chemistry.1These compounds, especially those having
a fluorinated stereogenic center, are fascinating building
blocks for new drug candidates. In the current research, we
focus on the stereoselective construction of a gem-chloro-
fluorinated chiral carbon center, which is an attractive
functional group because of the following reasons: 1) R-
chloro-R-fluoro carbonyl compounds are expected to be
useful synthetic intermediates for a variety of chiral fluori-
nated compounds because the chlorine moiety works as a
leaving group; 2) the gem-chlorofluoromethylene group
would be a chiral isostere of the gem-difluoromethylene

group in bioactive compounds.2 Surprisingly, very few
researchers have focused on the asymmetric synthesis of
gem-chlorofluoro compounds.3,4 One possible reason for
this is that it is difficult to discriminate two halogens in the
stereochemistry-determining step due to their sterical simi-
larity. Recently, we succeeded in carrying out the asym-
metric syntheses of some R-chloro-R-fluoro carbonyl
compounds.3c We also showed that the nucleophilic sub-
stitution of these compounds proceeds with keeping their
optical purity. These successful results encouraged us to
attempt the development of a method for synthesizing a
new class of R-chloro-R-fluoro carbonyl compounds.
Our synthetic strategy is shown in Scheme 1. Electro-

philic chlorination of β-keto esters affords R-monochloro-
β-keto esters in situ, in the presence of chiral Lewis acid
catalyst. Subsequent electrophilic fluorination yields the
desired R-chloro-R-fluoro-β-keto esters with asymmetric

(1) (a) Fluorine in medicinal chemistry and chemical biology; Ojima, I.,
Eds.; Wiley & Sons: New York, 2009. (b) B�egu�e, J.-P.; Bonnet-Delphon, D.
Bioorganic andMedicinal Chemistry of Fluorine; Wiley & Sons: Hoboken,
NJ, 2008.

(2) Considerable effort has been made for the synthesis and bio-
logical evaluation of CF2-incorporated bioactive compounds. See ref 1

(3) (a) Frantz, R.; Hintermann, L.; Perseghini, M.; Broggini, D.;
Togni, A. Org. Lett. 2003, 5, 1709. (b) Cho, M. J.; Kang, Y. K.; Lee,
N.R.;Kim,D.Y.Bull. KoreanChem. Soc. 2007, 28, 2191. (c) Shibatomi,
K.; Yamamoto, H. Angew. Chem., Int. Ed. 2008, 47, 5796.

(4) During the preparation of this manuscript, a nice paper appeared
describing the highly enantioselective R-fluorination of R-chloro-β-keto
esters by using a chiral nickel catalyst (our manuscript was originally
submitted on October 14, 2010); see: Kang, S. H.; Kim, D. Y. Adv.
Synth. Catal. 2010, 352, 2783.
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induction.Nucleophilic substitution of the chlorinemoiety
in the resulting compounds affords a variety ofR-fluoro-R-
heteroatom-substituted esters. In 2003, Togni and co-
workers demonstrated the asymmetric synthesis of R-
chloro-R-fluoro-β-keto esters by this sequential double
halogenation in one-pot operation in the presence of
Ti-TADDOLate catalyst with up to 65% ee.3a,5 With the
aim of achieving high asymmetric induction, we attempted
to carry out gem-chlorofluorination in the presence of a
new chiral Lewis acid catalyst, which we synthesized from
a 2-pyridyl monooxazoline ligand (SPYMOX)6 having a
spiro-fused axial chiral binaphthyl backbone (Scheme 2).

We started our investigation by screening various Lewis
acids for the enantioselectiveR-fluorination ofR-chloro-β-
keto ester 2 with N-fluorobenzenesulfonimide (NFSI).7,8

As shown in Table 1, the copper(II) triflate complex of
SPYMOX (1) was very effective for asymmetric fluorina-
tion of 2 in benzene; in this case, the desired R-chloro-R-
fluoro-β-keto ester 3a was obtained in high yield and
enantioselectivity (entry 5; 90% ee).

The high asymmetric induction ability of our new catalyst
in the fluorination prompted us to proceed to the next stage,
the one-pot asymmetric gem-chlorofluorination of β-keto
esters. In the first step, β-keto ester 4a was chlorinated with
N-chlorosuccinimide (NCS) in thepresence of a1/Cu(OTf)2
complex. After the complete consumption of 4a by TLC
monitoring, NFSI was added to the reaction mixture.
Fluorination was conducted at 40 �C for 8 h to afford the
desired product 3a in 70%yield (over 2 steps) alongwith the
R,R-dichlorinated form in approximately 5%yield (Table 2,
entry 1). To our delight, the optical purity of 3a in this one-
pot reactionwas sufficiently high (90% ee), and the sense of
enantioselection was the same as that in the fluorination of
monochloro ester 2 (Table 1, entry 5). This implied that the
stereochemical outcome of this double halogenation is
determined by the fluorination step. Several β-keto esters
were subjected to gem-chlorofluorination under similar
reaction conditions. As summarized in Table 2, various R-
chloro-R-fluoro-β-keto esters, includingaliphatic, aromatic,
and heterocyclic ketoesters, were successfully synthesized
with good to high optical purity (79�92% ee).9

Next, we extended the enantioselective gem-chlorofluor-
ination to several β-keto phosphonates 5. As shown in
Table 3, the 1/Cu(OTf)2 complexwas very effective for this
reaction; thus, the desired R-chloro-R-fluoro-β-keto phos-
phonates 6a�f were isolated in moderate to good yields
with high enantioselectivity (85�92% ee).9 It is noteworthy

Scheme 2. Preparation of Chiral Spiro Lewis Acid Catalyst

Table 1. Asymmetric R-Fluorination of R-Chloro-β-keto Estera

entry Lewis acid solvent

timeb

[h]

yieldc

[%]

eed

[%]

1 Ni(ClO4)2 3 6H2O benzene 18 57 0

2 Mg(OTf)2 benzene 22 54 6

3 Zn(OTf)2 benzene 38 81 80

4e Cu(ClO4)2 36H2O benzene 11 36 76

5 Cu(OTf)2 benzene 8 82 90

6 Cu(OTf)2 CH2Cl2 11 61 52

7 Cu(OTf)2 Et2O 13 72 60

aAll reactions were carried out at 40 �C (bath temperature) with 3
equiv ofNFSI in the presence of a chiral catalyst prepared from12mol%
of 1 and 10 mol% of Lewis acidic metal. bAll reactions were quenched
after the complete consumption of 2 unless otherwise noted. c Isolated
yield. dDetermined by chiral HPLC analysis. eAbout 50% of the
starting material remained unreacted.

Scheme 1. Synthetic Strategy for Chiral Fluorinated Molecules

(5) A method for asymmetric chlorination of β-keto esters with a Ti-
TADDOLate catalyst: Hintermann, L.; Togni, A. Helv. Chim. Acta
2000, 83, 2425.

(6) For the synthesis of SPYMOX and its application in palladium-
catalyzed asymmetric allylic alkylation, see: Shibatomi, K.; Muto, T.;
Sumikawa, Y.; Narayama, A.; Iwasa, S. Synlett 2009, 241.

(7) Although the field of asymmetricR-fluorination of activemethine
compounds is progressing steadily, there are only a few known catalysts
that achieve high enantioselectivity (over 90% ee) in the fluorination of
acyclic β-keto esters or β-keto phosphonates. For successful examples
with acyclic substrates, see: (a) Hintermann, L.; Togni, A. Angew.
Chem., Int. Ed. 2000, 39, 4359. (b) Hamashima, Y.; Yagi, K.; Takano,
H.; Tam�as, L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530. (c)
Hamashima, Y.; Suzuki, T.; Shimura, Y.; Shimizu, T.; Umebayashi, N.;
Tamura, T.; Sasamoto, N.; Sodeoka, M. Tetrahedron Lett. 2005, 46,
1447. (d)Kim, S.M.;Kim,H.R.;Kim,D.Y.Org. Lett. 2005, 7, 2309. (e)
Reddy, D. S.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.; Kanema-
sa, S. Angew. Chem., Int. Ed. 2008, 47, 164. (f) Bernardi, L.; Jørgensen,
K. A. Chem. Commun. 2005, 1324. (g) See also ref 4.

(8) For a review on the asymmetric functionalization at a haloge-
nated prochiral carbon, see: Shibatomi, K. Synthesis 2010, 2679.

(9) We have confirmed that the optical purity of gem-chlorofluoro
carbonyl compounds 3a, 3b, 3d, and 6a does not change even after
chromatographic purification using achiral silica gel or solvent evapora-
tion. Therefore, we conclude that the enantiomers do not undergo self-
disproportionation during the purification process. For enantiomers
self-disproportionation effect of perfluorinated compounds, see:(a)
Soloshonok,V.A.Angew.Chem., Int. Ed. 2006, 45, 766. (b) Soloshonok,
V. A.; Ueki, H.; Yasumoto, M.; Mekala, S.; Hirschi, J. S.; Singleton,
D. A. J. Am. Chem. Soc. 2007, 129, 12112. (c) Ueki, H.; Yasumoto, M.;
Soloshonok, V. A. Tetrahedron: Asymmetry 2010, 21, 1396.
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that both chlorination and fluorination of β-keto phos-
phonates proceeded much faster than those of β-keto
esters; however, the selectivity toward monochlorination
was slightly poor, which resulted in the formation of a
considerable amount of R,R-dichloro-β-keto phosphonate
(ca. 10�25%) as the byproduct.
After successfully synthesizing optically active gem-

chlorofluoro carbonyl compounds, we carried out deriva-
tization of these compounds to obtain a variety of chiral
fluoro compounds (Scheme 3). Nucleophilic substitution
of the optically active 3d (92% ee) with alkyl thiols
proceeded smoothly to yield the corresponding R-fluoro-
R-sulfenyl-β-keto esters 7a,b,10 which are expected to
be versatile building templates for biologically active
molecules.10b It should be noted that the optical purity
of products 7 was exactly the same as that of the starting
compound 3d. This result strongly suggested that this
nucleophilic substitution proceeded in a rigorous SN2
fashion. Substitution of 3d with sodium azide also

proceeded smoothly to yield the corresponding R-azido-
R-fluoro-β-keto ester 8 without loss of optical purity.11

Azide 8 was further converted into fluorinated 1,2,3-tria-
zoles 9a,b by copper-catalyzed cycloaddition with alkynes.
Furthermore, reduction of 3dwith lithium tri(tert-butoxy)-
aluminum hydride yielded secondary alcohol 10with good
diastereoselectivity (anti/syn = 8/2). 10 could be success-
fully converted into fluoro epoxide 11 by alkaline treat-
ment. There are very few reports on the asymmetric

Table 3. Asymmetric gem-Chlorofluorination of β-Keto Phos-
phonates.a

a See Supporting Information for experimental details. b Isolated
yield over 2 steps. cDetermined by chiral HPLC analysis. dCatalyst
was prepared from 30 mol % of Cu(OTf)2 and 36 mol % of 1.

Scheme 3. Stereospecific Derivatization of 3d

Table 2. Asymmetric gem-Chlorofluorination of β-Keto Estersa

a See Supporting Information for experimental details. b Isolated
yield over 2 steps. cDetermined by chiral HPLC analysis. dNp =
1-naphthyl. eFluorination was carried out under reflux conditions.
fCatalyst was prepared from 30 mol % of Cu(OTf)2 and 36 mol % of 1.

(10) For asymmetric syntheses of R-fluoro-R-sulfenyl-β-dicarbonyl
compounds, see: (a) Jereb,M.; Togni, A.Chem.;Eur. J. 2007, 13, 9384.
(b) Ishimaru, T.; Ogawa, S.; Tokunaga, E.; Nakamura, S.; Shibata, N.
J. Fluorine Chem. 2009, 130, 1049. (c) See also ref 7e.

(11) For asymmetric syntheses ofR-fluoro-R-nitrogen-substituted-β-
dicarbonyl compounds, see: (a) Huber, D. P.; Stanek, K.; Togni, A.
Tetrahedron: Asymmetry 2006, 17, 658. (b) He, R.; Wang, X.; Hashimoto,
T.; Maruoka, K. Angew. Chem., Int. Ed. 2008, 47, 9466. (c) Mang, J. Y.;
Kwon, D. G.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 259. (d) Also see ref
7e.
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synthesis of fluoro epoxides, although optically active
fluoro epoxides are known to be good synthetic intermedi-
ates for various chiral R-substituted ketones.12

We next focused on the transformation of R-chloro-R-
fluoro-β-keto esters into optically active β-amino acids
because fluorinated amino acids have been the subject of
intensive research.1 Reduction of 3awith diisobutylalumi-
num hydride (DIBAL-H) afforded anti-chlorofluorohy-
drin 12 with very high diastereoselectivity (Scheme 4).13

Treatment of 12 with triflic anhydride and subsequent
azidation yielded the corresponding azide 13 with inver-
sion of configuration; the obtained azide was converted
into a fully protected β-amino acid 14 with a gem-chloro-
fluoromethylene group.

Finally, to establish the absolute stereochemistry of
these gem-chlorofluoro compounds, we synthesized R-
chloro-R-fluoro-β-keto ester 16, which has a d-menthyl
group as a chiral auxiliary, by the fluorination ofR-chloro-
β-keto ester 15 with the (R)-1/Cu(OTf)2 catalyst (94% de,
Scheme 5).14 Hydride reduction of 16 and subsequent
acylation yielded β-acyloxy ester 18. 18 was recrystallized
from Et2O/n-hexane to afford single crystals that were
suitable for X-ray structural analysis. As shown in
Scheme 5, on the basis of the stereochemistry on the
d-menthyl group, the absolute configuration of the

dihalogenated chiral carbon center was determined to be
R. It was also confirmed that the reduction of 16 and 3d

with lithium tri(tert-butoxy)aluminum hydride preferen-
tially affords anti-isomers.
Inconclusion,wehavedemonstrated the enantioselective

gem-chlorofluorination of active methylene compounds in
the presence of a new chiral Lewis acid catalyst, the
SPYMOX/Cu(II) complex; in this reaction, the corre-

sponding R-chloro-R-fluoro carbonyl compounds were

isolated with up to 92% ee. The resulting compounds

were successfully converted into various R-fluoro-R-het-
eroatom-substituted carbonyl compounds via nucleophilic

substitutionwithout loss of optical purity.A fully protected

β-amino acid with a gem-chlorofluoromethylene function

was also synthesized.
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Scheme 5. Determination of Stereochemistry

Scheme 4. Synthesis of R-Chloro-R-fluoro-β-amino Ester

(12) For asymmetric syntheses of fluorinated epoxides and their
transformation, see: (a)Gosmini, C.; Dubuffet, T.; Sauvêtre, R.; Normant,
J.-F.Tetrahedron:Asymmetry 1991, 2, 223. (b)Wong,O.A.; Shi, Y. J.Org.
Chem. 2009, 74, 8377.

(13) The relative configuration of 12 was determined by X-ray
crystallographic analysis. See Supporting Information for details.

(14) Fluorination of ent-15, which has an l-menthyl group as a chiral
auxiliary, yielded ent-16 as a diastereomixture (dr = 21:79) in the
presence of the (R)-1/Cu(OTf)2 catalyst. The absolute configuration at
the chlorofluorinated carbon in the major diastereomer of ent-16 was
found to be the same as that in the major diastereomer of 16 obtained in
Scheme 5 by comparing their NMR spectra. This clearly indicated that
the sense of stereoselection in these fluorination reactionswas controlled
by the chiral catalyst and not by the chiral auxiliary.


